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Secure Multi-Party Computation

Goal: compute



Example application

Privacy-preserving shortest path algorithm

Start/destination remain private to server holding map.



Secret sharing-based MPC

Additive secret sharing:

[x ]: Pi holds xi (no information on x)

x = x1 + · · ·+ xn ∈ F

Need all n shares to reconstruct secret.

Arithmetic Black Box:

I Add([x ], [y ]): output [x + y ] (local operation)

I Mul([x ], c): output [c · x ] (local operation)

I Mul([x ], [y ]): output [x · y ] (send O(1) F-element)

I Reveal([x ]): output x (send O(1) F-element)

Cost metric: |comms| + local comp.



Beyond circuits

ABB gives evaluation of arithmetic circuits or binary circuits.

Most programs aren’t written as circuits:

I How about array lookup with secret shared index?

I Dijkstra’s algorithm?

I RAM programs?

Goal: augment ABB with oblivious data structures
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Results overview

Obliv. data structure Based on Complexity

Array Demux [LDDA12] O(N)

Dictionary
{

N comparison circuits O(N · `)
‘Binary search’ circuit O(N + ` · logN)

Array
{

SCSL ORAM O(log4N)
Path ORAM O(log3N)

Priority queue
{

Array O(log4N)
Modified Path ORAM O(log3N)

N: # items
`: length of keys (for dict.)



Simple Oblivious Array/Dictionary

Compute N comparisons:

[c0] = ([i ]
?
= 0), [c1] = ([i ]

?
= 1), , . . . , [cN−1] = ([i ]

?
== N − 1)

x[i ] =
∑
j

[cj ] · [xj ]

Comparison cost: O(`) comms/computation (constant round)
Total: O(N · `)



Oblivious RAM

N70

2

5

# j

i

D[i]

D[j]

Server: Enc   (D)
Client: sk, state

sk

Goal: hide access pattern (i , j) from server.

Access pattern must be randomized, polylog(N) overhead

[Gol90, GO97]



Key observation

ORAM + MPC for circuits ⇒ polylog(N) oblivious array for MPC

[OS97, DMN11]



Oblivious array using ORAM

secret share client state,

secret share D
D1 D2

I Replace encryption with secret sharing (c.f. [DMN11])

I Execute instructions client/server within MPC

I Reveal client’s address queries – secure by ORAM simulation

Related: client-server model using Yao [GKK+12, AHMR14]



Oblivious array using ORAM

Challenge: design MPC circuit for ORAM instructions



Tree ORAM schemes

Tree ORAM [SCSL11]:

I Simple, tree-based construction

I O(log3N) overhead

I Worse asymptotics than previous, but much more practical

Path ORAM (Stefanov et al. CCS ‘13):

I Same structure as [SCSL11]

I New ‘path eviction’ method

I O(log2N) overhead

Similar works: [GGH+13, CLP14]



Tree-based ORAM

{a:3}

0{c :0} 1 2 3

{b:4},{d :6}

4 5 6 7

Index a b c d
Leaf 3 4 0 6

Invariant: x lies on path from root to Leaf(x)
Each node is bucket of fixed size Z = 2



Path ORAM eviction

Choose random leaf
Push entries as far down path as possible

{b:2,e:1}

{a:3}

0{c :0} 1

{f :2, i :2}

2

{g :2}

3

{h:3}

{d :6}

4 5 6 7

Index a b c d e f g h i
Leaf 3 2 0 6 1 3 5 2 5



Path ORAM eviction

Choose random leaf
Push entries as far down path as possible

{b:2,e:1}

0

{c :0}
1

{f :2,i :2}

2

{g :2}
3

{h:3,a:3}

{d :6}

4 5 6 7

Index a b c d e f g h i
Leaf 3 2 0 6 1 3 5 2 5



Path Eviction in MPC

Eviction leaf: `∗

Entry in path: leaf `
Calculate level entry ends up at:

I Least Common Ancestor of `, `∗

I First bit where `, `∗ differ
I ≡ first 1 in BitDec(`⊕ `∗)

I Adjust LCA to account for bucket overflows

O(logN) comp. per entry, for path + stash size O(logN)

⇒ O(log2N)

Now need to assign levels (more complex)



Path eviction in MPC

([E1], [lev1]) ([E2], [lev2]) . . . ([En], [levn])

First idea: oblivious shuffle with permutation networks

([Eπ(1)], [levπ(1)]) ([Eπ(2)], [levπ(2)]) . . . ([Eπ(n), [levπ(n)])

Reveal levπ(i) and place entry [Ei ] in bucket

Problem: some entries may be empty (dummy)

I If Ei is empty then levi = ⊥
I Reveals # of empty entries

Solution: requires oblivious sorting – O(logN log log2N)
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Oblivious Array from Path ORAM: summary

Single eviction cost: O(log2N) comms/comp, O(logN) rounds

Read/write cost: O(logN)

×O(logN) levels recursion

Total cost: O(log3N)

In practice: approx. 30% LCA comp, 30% sorting, 30% shuffling



Application: Dijkstra’s algorithm

I |V |, |E | public

I Graph structure secret

I Maintain distance to nodes in oblivious priority queue Q

for each edge

if new vertex

v = Q.pop()

[ ... ]

Q.DecKey(v, [ ... ])



Dijkstra complexity

Ordinary complexity: O(|E |+ |V | log |V |)

MPC: O(|V | log3|V |+ |E |(log3 |E |+ log3 |V |))
Sparse graphs where |E | = O(|V |):

I O(|V | log3 |V |)

First MPC implementation of Dijkstra with sublinear overhead.



Implementation

Implemented using SPDZ MPC protocol:

I Information-theoretic online phase

I SHE for ‘preprocessing’ phase
I Independent of inputs
I Can be done in advance



Timings

Oblivious array: < 100ms (online) for size 1 million with Path
ORAM

Path ORAM beats O(N) solutions for sizes > 1000.

Dijkstra: ≈ 5000s for graph with 1000 nodes



Conclusion

Oblivious data structures in MPC are practical.

Open problems:

I More data structures; RAM programs

I Better ORAM for MPC? Circuit ORAM [WCS14]

Thanks for listening!
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