Efficient, Oblivious Data Structures for MPC

Marcel Keller and Peter Scholl

Department of Computer Science University of Bristol

11 December 2014

Secure Multi-Party Computation

Goal: compute f(a, b, c, d)

Example application

Privacy-preserving shortest path algorithm

Start/destination remain private to server holding map.

Secret sharing-based MPC

Additive secret sharing:

```
[x]: P_i holds x_i (no information on x)
```

 $x = x_1 + \cdots + x_n \in \mathbb{F}$

Need all *n* shares to reconstruct secret.

Arithmetic Black Box:

- Add([x], [y]): output [x + y] (local operation)
- Mul([x], c): output $[c \cdot x]$ (local operation)
- Mul([x], [y]): output $[x \cdot y]$ (send O(1) \mathbb{F} -element)
- Reveal([x]): output x (send O(1) \mathbb{F} -element)

Cost metric: |comms| + local comp.

ABB gives evaluation of arithmetic circuits or binary circuits.

Most programs aren't written as circuits:

- How about array lookup with secret shared index?
- Dijkstra's algorithm?
- RAM programs?

ABB gives evaluation of arithmetic circuits or binary circuits.

Most programs aren't written as circuits:

- ► How about array lookup with secret shared index?
- Dijkstra's algorithm?
- RAM programs?

Goal: augment ABB with oblivious data structures

Obliv. data structure		Based on	Complexity
Array		Demux [LDDA12]	O(N)
Dictionary	ſ	N comparison circuits	$O(N \cdot \ell)$
	l	'Binary search' circuit	$O(N + \ell \cdot \log N)$
Array	ſ	SCSL ORAM	$O(\log^4 N)$
	l	Path ORAM	$O(\log^3 N)$
Priority queue	{	Array	$O(\log^4 N)$
		Modified Path ORAM	$O(\log^3 N)$

N: # itemsℓ: length of keys (for dict.)

Compute *N* comparisons:

$$[c_0] = ([i] \stackrel{?}{=} 0), \ [c_1] = ([i] \stackrel{?}{=} 1), \ , \dots, [c_{N-1}] = ([i] \stackrel{?}{=} N-1)$$

$$x_{[i]} = \sum_{j} [c_j] \cdot [x_j]$$

Comparison cost: $O(\ell)$ comms/computation (constant round) Total: $O(N \cdot \ell)$

Oblivious RAM

Goal: hide *access pattern* (i, j) from server.

Access pattern must be randomized, polylog(N) overhead

[Gol90, GO97]

ORAM + MPC for circuits \Rightarrow polylog(N) oblivious array for MPC

[OS97, DMN11]

Oblivious array using ORAM

- Replace encryption with secret sharing (c.f. [DMN11])
- Execute instructions client/server within MPC
- Reveal client's address queries secure by ORAM simulation

Related: client-server model using Yao [GKK+12, AHMR14]

Challenge: design MPC circuit for ORAM instructions

Tree ORAM schemes

Tree ORAM [SCSL11]:

- Simple, tree-based construction
- ► O(log³ N) overhead
- Worse asymptotics than previous, but much more practical

Path ORAM (Stefanov et al. CCS '13):

- Same structure as [SCSL11]
- New 'path eviction' method
- O(log² N) overhead

Similar works: [GGH+13, CLP14]

Tree-based ORAM

🖌 University of

<ロト <回ト < 注ト < 注ト

Index a b c dLeaf 3 4 0 6 Invariant: x lies on path from root to Leaf(x)Each node is bucket of fixed size Z = 2

Path ORAM eviction

Path ORAM eviction

Choose random leaf Push entries as far down path as possible

Path Eviction in MPC

Eviction leaf: ℓ^* Entry in path: leaf ℓ Calculate level entry ends up at:

- Least Common Ancestor of ℓ, ℓ^*
 - First bit where ℓ, ℓ^* differ
 - \equiv first 1 in BitDec($\ell \oplus \ell^*$)
- Adjust LCA to account for bucket overflows

 $O(\log N)$ comp. per entry, for path + stash size $O(\log N)$

 $\Rightarrow O(\log^2 N)$

Now need to assign levels (more complex)

Path eviction in MPC

 $([E_1], [lev_1])$ $([E_2], [lev_2])$... $([E_n], [lev_n])$

First idea: oblivious shuffle with permutation networks

 $([E_{\pi(1)}], [lev_{\pi(1)}])$ $([E_{\pi(2)}], [lev_{\pi(2)}])$... $([E_{\pi(n)}, [lev_{\pi(n)}])$ Reveal $lev_{\pi(i)}$ and place entry $[E_i]$ in bucket

Path eviction in MPC

 $([E_1], [lev_1])$ $([E_2], [lev_2])$... $([E_n], [lev_n])$

First idea: oblivious shuffle with permutation networks

 $([E_{\pi(1)}], [lev_{\pi(1)}])$ $([E_{\pi(2)}], [lev_{\pi(2)}])$... $([E_{\pi(n)}, [lev_{\pi(n)}])$

Reveal lev_{$\pi(i)$} and place entry $[E_i]$ in bucket Problem: some entries may be empty (dummy)

- If E_i is empty then $\text{lev}_i = \bot$
- Reveals # of empty entries

Solution: requires oblivious sorting $-O(\log N \log \log^2 N)$

Oblivious Array from Path ORAM: summary

Single eviction cost: $O(\log^2 N)$ comms/comp, $O(\log N)$ rounds

Read/write cost: $O(\log N)$

$$\checkmark$$
 × O(log N) levels recursion

Total cost: $O(\log^3 N)$

In practice: approx. 30% LCA comp, 30% sorting, 30% shuffling

Application: Dijkstra's algorithm

- ► |V|, |E| public
- Graph structure secret
- Maintain distance to nodes in oblivious priority queue Q

```
for each edge
if new vertex
    v = Q.pop()
[ ... ]
Q.DecKey(v, [ ... ])
```


Ordinary complexity: $O(|E| + |V| \log |V|)$

MPC:
$$O(|V| \log^3 |V| + |E| (\log^3 |E| + \log^3 |V|))$$

Sparse graphs where $|E| = O(|V|)$:

$$\blacktriangleright O(|V|\log^3|V|)$$

First MPC implementation of Dijkstra with sublinear overhead.

Implemented using SPDZ MPC protocol:

Information-theoretic online phase

- SHE for 'preprocessing' phase
 - Independent of inputs
 - Can be done in advance

Oblivious array: < 100ms (online) for size 1 million with Path ORAM

Path ORAM beats O(N) solutions for sizes > 1000.

Dijkstra: \approx 5000s for graph with 1000 nodes

Conclusion

Oblivious data structures in MPC are practical.

Open problems:

- More data structures; RAM programs
- Better ORAM for MPC? Circuit ORAM [WCS14]

Conclusion

Oblivious data structures in MPC are practical.

Open problems:

- More data structures; RAM programs
- Better ORAM for MPC? Circuit ORAM [WCS14]

Thanks for listening!

