Efficient, Oblivious Data Structures for MPC

Marcel Keller and Peter Scholl

Department of Computer Science
University of Bristol

11 December 2014

Bl University of
[BEI BRISTOL

Secure Multi-Party Computation
‘ q a—
. ~
a

Goal: compute f(a,b,c,d)

\

b

(@)
=\

niversity of

RISTOL

51

e

3]
ax
=]e

Example application

Privacy-preserving shortest path algorithm

Start/destination remain private to server holding map.

ﬁ

vé mverslty of

Secret sharing-based MPC

Additive secret sharing:
[x]: P; holds x; (no information on x)

X=x1 4+ +x€F

Need all n shares to reconstruct secret.

Arithmetic Black Box:

v

Add([x], [y]): output [x +y] (local operation)
Mul([x], ¢): output [c-x] (local operation)
Mul([x], [y]): output [x-y] (send O(1) F-element)
Reveal([x]): output x (send O(1) F-element)

v

v

v

Cost metric: |comms| + local comp. E@Univmyof

BRISTOL

Beyond circuits

ABB gives evaluation of arithmetic circuits or binary circuits.

Most programs aren’t written as circuits:
» How about array lookup with secret shared index?
» Dijkstra's algorithm?
» RAM programs?

Bl University of
[BEI BRISTOL

Beyond circuits

ABB gives evaluation of arithmetic circuits or binary circuits.

Most programs aren’t written as circuits:
» How about array lookup with secret shared index?
» Dijkstra's algorithm?
» RAM programs?

Goal: augment ABB with oblivious data structures

Bl University of
[BEI BRISTOL

Results overview

Obliv. data structure Based on Complexity
Array Demux [LDDA12] O(N)
Dictionar { N comparison circuits O(N -?)
ictionary ‘Binary search’ circuit O(N + ¢ -log N)
SCSL ORAM O(log* N)
Array { Path ORAM O(log? N)
. Array O(log* N)
Priority queue { Modified Path ORAM O(log? N
N: # items
?: length of keys (for dict.)
Bl University of

BEI BRISTOL

Simple Oblivious Array/Dictionary

Compute N comparisons:

[eo] = ([1 Z0), [a] = ([=1), ... [ena] = ([] == N = 1)

s = 2_lgl - byl

Comparison cost: O(¢) comms/computation (constant round)
Total: O(N - ¢)

Elé University of
[BRISTOL

Oblivious RAM

! >
< D_[i] ~‘

5 —
&) -
— ———]
Client: sk, state
Server: Encg (D)

Goal: hide access pattern (i, j) from server.

Access pattern must be randomized, polylog(/N) overhead

[Gol90, GOY7]

Bl University of
[BEI BRISTOL

Key observation

ORAM + MPC for circuits = polylog(N) oblivious array for MPC

[0597, DMN11]

Evé University of
[BRISTOL

Oblivious array using ORAM

=
< .II

C1 C2

D, D,
secret share D
secret share client state,

» Replace encryption with secret sharing (c.f. [DMN11])
» Execute instructions client/server within MPC

» Reveal client’s address queries — secure by ORAM simulation

Related: client-server model using Yao [GKK+12, AHMR14] =
@) BRISTOL

Oblivious array using ORAM

Challenge: design MPC circuit for ORAM instructions

Evé University of
[BRISTOL

Tree ORAM schemes

Tree ORAM [SCSL11]:
» Simple, tree-based construction
» O(log® N) overhead

» Worse asymptotics than previous, but much more practical

Path ORAM (Stefanov et al. CCS '13):
» Same structure as [SCSL11]
» New ‘path eviction’ method
» O(log? N) overhead

Similar works: [GGH+13, CLP14]

Bl University of
[BEI BRISTOL

Tree-based ORAM

@ Wz 06 G O

Index a b ¢ d

Leaf 3 4 0 6
Invariant: x lies on path from root to Leaf(x)
Each node is bucket of fixed size Z = 2

niversity

y of
RISTOL

5|

3]
ax
=]e

Path ORAM eviction

Choose random leaf
Push entries as far down path as possible

{b:2,e:1}

Path ORAM eviction

Choose random leaf
Push entries as far down path as possible

Path Eviction in MPC

Eviction leaf: ¢*
Entry in path: leaf ¢
Calculate level entry ends up at:
» Least Common Ancestor of ¢, ¢*
» First bit where £, ¢* differ
» = first 1 in BitDec(¢ & £*)

» Adjust LCA to account for bucket overflows

O(log N) comp. per entry, for path + stash size O(log N)

= O(log® N)

Now need to assign levels (more complex)

Bl University of
[BEI BRISTOL

Path eviction in MPC

([Ex], lleva]) ([E2], [leva]) ... ([En], [lev])

First idea: oblivious shuffle with permutation networks

([Ex)s leve@)]) ([Exe)l [leva)]) -+ ([Ex(n)s [leva(m)])

Reveal lev,(; and place entry [E;] in bucket

Bl University of
[BEI BRISTOL

Path eviction in MPC

([Ex], lleva]) ([E2], [leva]) ... ([En], [lev])

First idea: oblivious shuffle with permutation networks

([Ex)s leve@)]) ([Exe)l [leva)]) -+ ([Ex(n)s [leva(m)])

Reveal lev,(; and place entry [E;] in bucket
Problem: some entries may be empty (dummy)
> If E; is empty then lev; = L
> Reveals # of empty entries

lé University of
Solution: requires oblivious sorting — O(log N log log? N) G.BRISTOL

Oblivious Array from Path ORAM: summary

Single eviction cost: O(log? N) comms/comp, O(log N) rounds

Read/write cost: O(log N)

@ x O(log N) levels recursion

Total cost: O(log® N)

In practice: approx. 30% LCA comp, 30% sorting, 30% shuffling

Bl University of
[BEI BRISTOL

Application: Dijkstra’s algorithm

» | V|, |E| public
» Graph structure secret

» Maintain distance to nodes in oblivious priority queue Q

for each edge
if new vertex
v = Q.popQ)
[...]
Q.DecKey(v, [... 1)

Bl University of
[BEI BRISTOL

Dijkstra complexity

Ordinary complexity: O(|E| + |V|log|V|)

MPC: O(|V|log®| V| + |E|(log® |[E| + log?® |V]))
Sparse graphs where |E| = O(|V|):

> O(|V[log® V)

First MPC implementation of Dijkstra with sublinear overhead.

Bl University of
[BEI BRISTOL

Implementation

Implemented using SPDZ MPC protocol:

» Information-theoretic online phase

» SHE for ‘preprocessing’ phase

» Independent of inputs
» Can be done in advance

Bl University of
[BEI BRISTOL

Timings

Oblivious array: < 100ms (online) for size 1 million with Path
ORAM

Path ORAM beats O(N) solutions for sizes > 1000.

Dijkstra: ~ 5000s for graph with 1000 nodes

Bl University of
[BEI BRISTOL

Conclusion

Oblivious data structures in MPC are practical.

Open problems:
» More data structures; RAM programs
» Better ORAM for MPC? Circuit ORAM [WCS14]

Elé University of
[BRISTOL

Conclusion

Oblivious data structures in MPC are practical.

Open problems:
» More data structures; RAM programs
» Better ORAM for MPC? Circuit ORAM [WCS14]

Thanks for listening!

Bl University of
[BEI BRISTOL

